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Introduction 

Pnenomena of acoustic reflection on plane boundaries 

between fluid and elastic media have ueon studied in the 

literature both theoretically and experimentally.1'2  A 

striking feature is the appearance of the so-called Rayleirh 

wave, a surface wave generated in the elastic medium at a 

critical angle of incidence, and propagating with a speed 

usually below and close to the shear wave speed in the solid. 

Most of its energy is concentrated in the solid near the 

j oundary, but part of it leaks into the fluid, causing an 

attenuation (complex wave number) in the propagation direction 

along the surface. 

An additional type of surface wave was shown to exist by 

Stonelay.3  This wave has a propagation speed close to that of 

sound in the fluid, is unattenuated in the direction of propa- 

gation, and most of its energy is concentrated in the fluid 

along the uoundary. 

In addition to these genuine surface waves, there also 

exist two types of lateral waves on a flat boundary between 

solid and fluid, which propagate with the compressional and 

shear speeds, respectively, of bulk waves in the solid.1 

Scattering from solid elastic cylinders has been investi- 

gated by means of the Watson-Sommerfeld transformation applied 

to tiie normal-mode series.1'*  In this case, one finds "creeping 

waves" with a surface wave type behavior, divided into two 

classes:  tnose witn speeds close to the elastic bulk speeds 



(Rayleigh and Whispering Gallery waves), and those with speeds 

close to the sound speed in tae fluid (Stoneley and Franz 

'.'aves) .  Previously, the Rayleigh and Stoneley-type waves (i.e., 

taose tending toward the Rayleigh and Stoneley waves in tae 

flat limit) were studied by Grace and Goodman5 and by Lapin6 by 

analytic methods, while numerical discussions of the Rayleigh 

and Whispering Gallery modes (higher order modes which arise 

because of the curvature of tae surface) were given by Doolittle, 

et al.1*  The latter authors also treated the Franz waves,7 i.e., 

higher order modes in the fluid whica arise because of the 

curvature of the joundary (and which also exist on an impene- 

trable surface). 

In the present work, we shall establish the connection 

between creeping rave and flat surface wave theory by investi- 

gating the limit of acoustic scattering from an elastic cylinder 

whose radius tends to infinity.  In Chapter I, we calculate 

the behavior of the circumferential wave modes for large cylinder 

radii.  Accordingly, the appropriate Debye- or Airy-type asymp- 

totic expansions for the cylinder functions are used to solve 

taa secular determinant for the complex surface wave numbers, 

numerical results for the Rayleigh, Stoneley, Franz, and Whispering 

Gallery wave numbers are obtained as a function of fluid wave 

number times cylinder radius for a solid aluminum cylinder in 

water, and in one case, also in vacuum.  In Chapter II, using 

the Watson-Sommerfeld transformation, we examine the behavior 

of the solution for the problem of a cylinder scattering radia- 

tion from a line source in the fluid as the cylinder radius tends 

to infinity.  In this limit, the residue sums corresponding to 



the different classes of circumferential waves found in 

Chapter I are shown to tend individually toward the different 

types of surface waves found on the flat surface.  In this 

way, the transition of creeping wave to surface wave theory, 

as the scattering object tends toward a flat surface, is 

established. 



Chapter I.  Surface Wave Modes on Elastic Cylinders 

The complex wave numbers of circumferential waves on 

an elastic cylinder in a fluid are obtained as the roots 

of a 3 x 3 determinant which may be derived in various ways. 

One way consists in assuming interior and exterior solutions 

in a form describing circumferential propagation8 [with a 

time factor exp(-iu>t) suppressed]: 

(la) 

(lb) 

and 

f^VfKTftr» ,ic) 

where JL , A are the elastic potentials and $ is the velocity 

potential in the fluid; k is the acoustic wave number in the 

fluid, and k_ and k  are the wave numbers of bulk longitudinal 

(compressional) and transverse (shear) waves in the solid, 

respectively.  Matching boundary conditions on the cylinder 

surface5 then leads to the secular determinant.  Alternately, 

when the problem of sound scattering by a cylinder is solved 

using the Watson-Sommerfeld transformation,1* the same deter- 

minant appears in the denominator of the scattered field, 

and its zeros give pole-type contributions which represent 



circumferential waves.  The scattering problem is discussed 

in Chapter II. 

The determinant in question, as a function of V , is** 

given by 

DW = 
«7' 

O «7*    «vTI (2a) 
where 

(2b) 

«7 ' = fy V [jy (XT) - Xy Zj(*i)\ 

<3= -Xr'D^^+a V(*T>] . (2c) 

Here,   GL is   the   cylinder   radius;    x=k.a.= <+><y<. where >C   is 

the  sound  velocity  in  the   fluid;  Xr T"= fci y«. - CJCL^CCT 

where /C*.T      are  the  bulk  elastic  velocities 

^M^)/f*> *r-Wfr 
(3) 

that depend on the Lame constants %JJL    and on the density 

fa  of the cylinder material, while £>t     is the density of 

the ambient fluid.  The primes on the cylinder functions 

denote derivatives with respect to their argument. 

Our subsequent analysis shows the existence of different 

classes of zeros, corresponding to physically different types 

of surface waves which have been classified in the Introduction. 



Each complex root v=v£.+-tvll  0f tne equation D(y)-0      inserted 

in Eqs. (1), yields a circumferential wave with wave number 

v/cu,   phase velocity C=^*^. and linear attenuation YL/CL . 

Excitation and re-radiation of these surface waves take place 

at a critical angled given by s\v\Qr- £-/C. 

We shall be concerned with the case of large cylinder 

radii, or large values of the parameters v^ X (h [<S)> xL and XT • 

For this purpose, it will be necessary to utilize asymptotic 

expansions of the cylinder functions, which assume different 

forms in different regions of the complex v-plane, mainly 

separated by anti-Stokes lines.  In our case, the appropriate 

division of the complex v-plane is shown in Figure 1.  Only 

zeros in the first quadrant need to be considered, those in 

the second and fourth quadrant leading to exponentially 

increasing waves, and those in the third quadrant differing 

from those in the first only in their sense of circumnavigation. 

Regions 1-4 are separated by the anti-Stokes lines of H^  OO > 

ri• (*T) r   and //v W / respectively, on which also the zeros 

of these functions and of their derivatives are located.  The 

circles, v/ith radii determined by 

|y-xi/=<rCx.'/»)> |v-x|-ö-<x^) (4) 

( XL ~ *L.    or XT ) , define regions within which Airy-type 

asymptotic expansions are viore accurate.  Outside, Debye- 

type expansions are appropriate; of these, transition-type 

forr.3 must be used near their corresponding anti-Stokes lines. 



In addition, anti-Stokes lines for J^O^T) originate at XL/T 

and run along the real axis to the left, with the zeros of 

JVO^T) being located along them. 

In the following, we shall consider physically different 

ty^es of surface waves, corresponding to different types of 

zeros of D&)  in an individual fashion. 

IA.  The Rayleigh Zero 

In the limiting case of the cylinder radius a.-*«», corre- 

sponding to the case of a flat elastic half-space bounded by 

a fluid, the speed £>&.  of the Rayleigh wave is known for 

practical cases to lie somewhat below the speed AT  of the 

elastic shear bulk wave.1  The corresponding zero >fe of D(y)y 

in the case of large but finite radius of curvature, will 

then lie to the right of XT  in Figure 1, with an imaginary 

part that puts it above the real axis.  In this case, the 

appropriate asymptotic expansions of all the cylinder functions 

appearing in D6*) are of Debye type; cf. Appendix A. 

Equation (2a) when set equal to zero, can in general be 

rewritten in the form 

{^T[X-a/c^,+ajö^v^vtj-xJ(^[».)(T4(xT^} 
(5) 

where 

3&> E'feyatcxa (6a) 



If the appropriate Debye expansions of Appendix A are 

inserted, we obtain 

(7a) 

'^^'-^-ate*^ 

(7c) 

where ^I«Vyfcl JWlJfJf  both being ^ &*(l). Using these 

expansions and calculating Eq. (5) to lowest order in Xj. 

writing y= fe.^«-^ü(i^ yields the well-known generalized 

Rayleigh equation for the flat half-space bounded by a 

fluid,1 

which has as one solution the (complex) Rayleigh wave 

number fc.fc=£*Y>C^ to be considered in this section. 

The behavior of the Rayleigh wave number k^/ on a 

cylindrically curved surface of large radius of curvature 

is obtained by retaining terms of order ^" in Eq. (5) when 

inserting Eqs. (7) into it.  With an iterative procedure 

that starts from the flat-limit Rayleigh wave number 

(8) 



the result for £^  is found as 

e.-f- »T^«-«*'<««4*fe*Sj 

Xftr    ir X( 

where 

l*  V ./AiM* 

(^L-LJT).  This agrees with an expression obtained pre- 

viously by Lapin6.  The derivation of Eq. (10a) involved 

expansions which are valid under the conditions 

(10b) 

(10c) 

**■■  * 1 k  kitl • dOd) 

Of these, the case ^L^^T *S most stringent because of 

the proximity of RR_ to kj   in physical cases of interest. 

For the case of a solid aluminum cylinder in water 

(c=1493 m/sec, o. = 6420 m/sec, Cp = 3040 m/sec, p, = 

3 3 1 g/cm , p2 = 2.7 g/cm ), we calculated the flat Rayleigh 

limit by solving Eq. (8) numerically, with the result 



ID 

Subsequently, we calculated €* from Eq. (10a), using this 

value for k^. The results are shown in Figure 2, where the 

trajectory of kit'/fe. as a function of the parameter ka.  is 

plotted as crosses in the complex plane.  The conditions of 

Eq. (10c) would indicate that the most reliable results are 

those for /ftX-70.  Also shown in the figure are points of the 

trajectory obtained by Ugincius1*'9 who used convergent expan- 

sions of the cylinder functions for **--25, and Debye expansions 

for ko->2 5 for a numerical evaluation of the roots when Eq. (2a) 

is set equal to zero. 

The present results, for large values of ka,   appear to 

be a natural continuation of Ugincius' zero trajectory, while? 

the present low-ka values might be less reliable because of 

the approximations used as mentioned.  Note that our results 

were obtained as an expansion away from the Rayleigh limit, 

while those of Ugincius tend towards it without having assumed 

it as a limit. 

It might be noted that in the limit of an elastic cylinder 

in a vacuum (f»;-*o) , the flat Rayleigh wave number fe* as well as 

the correction term €* become purely real, indicating no radia- 

tive losses of the Rayleigh wave in this case. 

IB.  The Stoneley Zero 

In the limit of the flat elastic half-space, the other 

solution of Eq. (8) of physical interest is the Stoneley zero,3 

a real root corresponding to a speed somewhat less than the 

speed of sound in the fluid.1  Accordingly, in order to obtain 



11 

an extension of the Stoneley zero to the case of a finitely 

curved cylinder, the transition-Debye asymptotic forms (as 

outlined in Appendix A) were used in the left-hand side of 

(5) because of the expected vicinity of the zero to the 

anti-Stokes line between Regions 3 and 4 of Figure 1.  Debye 

forms, rather than Airy forms which are more appropriate in 

the circle of Region 7, are used since we again want to obtain 

the Stoneley zero in the curved case by expanding about the 

known flat-limit Stoneley zero.  Sufficiently close to zero 

curvature, the radius of the Airy circle in the v/ka.  plane 

('reduced plane") becomes small enough for the Stoneley zero 

to lie outside of it.  (Even inside the circle, Debye forms 

are not incorrect; they just become less accurate). 

Ordinary (non-transition) Debye expansions were used for 

the other cylinder functions in Eq. (5), so that the same 

expressions as in Eqs. (7a, b) were inserted in Eq. (5). 

However, the transition-Debye expansion 

, -O*-*1)^* v co«lT,*'/x j{i+ «*-»)} 
(12) 

leads to the expression 

now to be used in Eq. (5).  Retention of the lowest-order 

subdominant part in the transition-Debye form yields the 

exponential in Eq. (13). 
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Using an approach analogous to that for the Rayleigh 

zero, we find the Stone ley wave number R5' as 

(14) 

where fes is the flat-limit wave number, and where 

PCs J^ 
(15a) 

with 

*,:-(^>\ **ÖC-ifl* 
(15b) 

C^
=
^>T).   This expression differs from a previous one 

given by Lapin6 in some details.  It is valid under 

conditions similar to Eqs. (10c, d) with fe^ replaced by 

fes; the most stringent one is the analog of Eq. (lOd). 

It is important to note that the only imaginary correc- 

tion term to the (real) Stoneley wave number for the flat 

case is the exponential in Eq. (15a), which resulted from 

retaining the subdominant term in the transition-Debye 

expansion of A/y &). Physically, it corresponds to the fact 
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that on a cylinder the Stoneley wave radiates off tangentially 

into the surrounding fluid while on a flat surface, its wave 

number is real and it cannot radiate off any energy. 

For the solid aluminum cylinder in water, we solved Eq. (8) 

numerically and obtained 

ks/k - l.OÖlS~ 1 (16) 

Which agrees with earlier results.10  Inserting into 

Eq. (15a) yields the points presented in Figure 3, plotted 

as a trajectory in the complex kjk,   plane with values of kau 

as a parameter.  The imaginary scale of the figure is greatly 

expanded because of the smallness of the imaginary part of the 

zero.  Due to the mentioned conditions of validity of the 

approximations, the points in the horizontal portion of the 

figure may not be numerically reliable.  It should be noted 

that Lapin's6 formula would give the imaginary parts of the 

Stoneley zeros only half as large as given by us, but we believe 

this to be due to an error in Lapin's printed expression. 

IC.  The Franz Zeros 

This type of zeros arises due to the finite curvature of 

the surface, and therefore exists even in the case of impene- 

trable objects. The corresponding surface waves get on and 

off the surface tangentially,1 and they are no longer present 

in the limit of a flat surface. Therefore, one cannot expand 

the positions of the zeros about the flat limit, as had been 

done in the preceding sections.  Instead, we shall expand about 

the known positions of the zeros for either a soft or a rigid 
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cylinder with finite curvature.  The latter are given by the 

complex zeros of Hy W or Hy (*) ,   respectively,7 which are 

located along the anti-Stokes line between Regions 3 and 4 in 

Figure 1.  Explicitly, they are11 (n= 1, 2, ): 

-t-fr(*-l)       (17a) 

(17b) 

where >v are the zeros of the Airy function, and fj   those 

of its derivative: 

L * (17c) 

For the case of the elastic cylinder, we use the 

ordinary Debye expansions for the cylinder functions in 

T"fc\ *K*«-^ of E<3S- (6) / but the Airy-type asymptotic expan- 

sions (Appendix A) for U(JcV  The latter are valid inside the 

circle of Region 7 in Figure 1 and had also been used to 

obtain Eqs. (17), but the results link up smoothly with those 

for the zeros outside the circle, in the transition region 

between Regions 3 and 4 where transition Debye expansions are 

used.12  In fact, in the reduced ^/ka.  plane, the radius of 

the circle shrinks with increasing fed at the same rate at which 

the zeros tend towards its center. 

One finds in this way:13 

+ HK-'-^3) (18) 



15 

with p>« and vA defined in Appendix A.  When this is substituted 

in Eq. (5), we obtain the equation 

^-^^K^*)»r 
(19a) 

(19b) 

and 

(19c) 

where 

The method to be used for solving Eq. (19a) will 

depend on the magnitude of V.     Using Eqs. (A8) and the 

relations 
y=x+ fr(x'k) 

we obtain from Eq. (19b), to lowest order in the quantity X'3: 

(20) 

where ffii^kijk  6-~^T) .  For typical fluid-solid interfaces 

one has Kif>,/fr<O.I   , so that fVl for X-X^^iO3  (for an 

aluminum cylinder in water, X^,—6000) .  In this case, we 

follow a method of Streifer and Kodis13"15 and, letting 

7c~^-<' ', we expand ni (^) and ^'(7) about *L   , defined in 

Eq. (17c) as the zeros of fti 0j) .  Subsequently, the quantity 

ii-yH is expanded in powers of UJ^-ipex^ift/i),   and we obtain 
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from Eq. (19a): 

Using Eq. (A8d), an iterative solution of this equation 

gives the result for the Franz wave numbers (labeled by 

R-FA= VFn/a- 

where 

(21) 

(22a) 

V^- W 

+- ^ 

with 

s = «r
y - Y*^ +■ ? - y K xT/k? 

(22b) 

(22c) 

(22d) 

(22e) 

(22f) 

This result was arrived at after one iteration, assuming 

that eC^CoCj-^l,   and that l-#<x~^*). These conditions are 
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met for the material parameters of typical fluid-solid cases. 

Accordingly, the above asymptotic expression for ^^ constitutes 

a series whose terms decrease as powers of X '  . 

Note that in Eq. (22b), the first three terms agree 

exactly with those of the rigid zeros, Eq. (17a), and that the 

material properties enter only through higher-order terms. 

As in the previous cases of the Rayleigh and Stoneley 

zeros, the binomial expansions used in obtaining Eqs. (22a, b) 

are v^lid under the conditions 

(23a) 

(23b) 

1 (23c) 

They impose lower limits on x, depending on the order 

of the zero.  In practice, these are found not to be very 

stringent, the most stringent one being Eq. (23a) with 

c=T.  In fact, the lower limits of validity were found to 

be as low as ka^3 for Fl, and e.g. ka^60 for F5, for an 

aluminum cylinder in water. 

Equation (22b) will be a useful expansion for a large 

range of x, as long as the numerical value of z is such that 

subsequent terms decrease.  However, if x becomes very large, 

x > x  (including the flat limit x-»°o) , we will have P>±  from 

Eq. (20).  In this case, we expand fli (*[)   and Ai(t^)   in Eq. (19a) 

about » , i.e., about the zeros of Ai(}j)  defined in Eq. (17c). 
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Then, the quantity V-*)^   may be expanded in powers of XM , 

yielding 

"        l (24) 

Using Eq. (A8d) and iterating again, we obtain for the 

Franz wave numbers Eq. (22a) with 

OOXC^  (25) 

which was arrived at after one iteration, assuming Ci^LcKj L \_ 

and £=-ü(l).  With this assumption, Eq. (25) again represents 
-//a 

a series whose terms decrease as powers of X/  .  The first 

three terms, in this case, agree exactly with those of the 

soft zeros, Eq. (17b), and the material properties enter only 

in higher order terms.  Conditions of validity are now Eqs. 

(23) with *)n   replaced by ^ . 

Numerical values of Eq. (22b) are shown in Figures 4a 

and 4b for the two lowest Franz zeros, Fl and F2, for an alum- 

inum cylinder in water, as compared to the zeros for soft and 

rigid cylinders in water.  The zeros are plotted as trajectories 

in the complex PFn/fe, plane with values of ka as a parameter. 

Only those soft-cylinder zeros are shown which do not interfere 

with the rest of the figure.  It is seen that in the range of 

x presented here, the elastic-cylinder zeros lie close to those 

for the rigid cylinder as expected.  For increasing mode number, 

corresponding elastic and rigid zeros move closer together. 
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ID.  The Whispering Gallery Zeros 

This type of zeros also arises due to the finite curvature 

of the surface, but is associated with the material properties 

of the elastic solid, and therefore does not exist in the case 

of impenetrable objects.  Since they are no longer present in 

the limit of a flat surface, we cannot expand the position of 

the zeros about the flat limit.  Instead, we find the positions 

of the longitudinal and transverse Whispering Gallery zeros by 

expanding about the known positions of the zeros of J^O^ 

and »JV(*T) , respectively.  The latter are located on the real 

axis in Figure 1, to the left of XL and *V, respectively, and 

are given by1* O*5 W*").' 

**n= ArL>T^v(xSTAyv^V^Ac,TV/3^ fr**?)       (26) 

where ^n are defined in Eq. (17c). 

ID1.  The Transverse Whispering Gallery Zeros 

In this case, we calculate the trajectories for the zeros 

which tend toward XT  
for large cylinder radii.  The region of 

interest in Figure 1 is Region 6, where we use the ordinary 

Debye expansions of Eqs. (7) for "F60 / *J&-^ >   and ^W / but 

the Airy-type asymptotic expansion (Appendix A) for T(XTV 

with ft* and m defined in Appendix A. One can write %(Xr> 

in terms of "T(XT) in Eq. (5) using Eq. (6b). Substituting 

these expansions into Eq. (5), we obtain the equation 
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Using Eqs. (A8) and the relations 

r &Htif***, 
we obtain from Eq. (2 8b), to lowest order in the quantity *>  ! 

T r  ' (29) 

Therefore f^->lfor all XT>1,   and letting *■?=£> we expand 

ni (*[)  and A'I(H)   about >1^ .  Then the quantity *}-*]* is expanded 

in powers of l/n  yielding 

j.<^ V^^^VrVWf?1^. (30) 

Using Eq. (A8d), an iterative solution of this equation 

gives the following result for the transverse Whispering 

Gallery wave numbers (wW*'  ^: 

^a ^T,«/«. (31a) 

where 

(31b) 



(31c) 
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with ^defined in Eq. (22c) and 

Old) 

This result was arrived at after one iteration, assuming 

that flt>*7-*■ 1.  The first three terms agree exactly with 

those of the zeros of J^(*T)   ,   Eq. (26) , and the material 

properties enter only in higher order terms. 

The binomial expansions used in obtaining Eqs. (31a, b) 

are valid under the conditions 

(32a) 

xrrtr 

^MV^. 
(32c) 

They impose lower limits on X, depending on the order 

of the zero, the most stringent condition being Eq. (32c). 

For an aluminum cylinder in water, the lower limits of 

validity were found to be ka^87 for WT,l and e.g. ka"^547 

for WT,5.  Numerical values of Eqs. (31) for this case are 

presented in Section IE. 
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ID2.  The Longitudinal Whispering Gallery Zeros 

In this case, we calculate the trajectories for the 

zeros which tend toward Xu 
for large cylinder radii.  The 

region of interest in Figure 1 is Region 5, where we use 

the ordinary Debye expansion of Eq. (7c) for h(x), and the 

Airy-type asymptotic expansion (Appendix A) for fQ<C)', 

with ^«jL and w\ defined in Appendix A.  The method used 

for finding the longitudinal zeros involves an expansion 

about the zeros of 3^0d.)  which lie on the anti-Stokes 

line for 3^C*"TV (cf. Appendix A and Figure 1) , and, there- 

fore, would necessitate the use of the transition Debye 

expansion (Appendix A) for \(XT)* 

(34) 

However, the use of Eq. (34) renders the solution of 

Eq. (5) intractable analytically because of the presence 

of an overlapping double infinity of zeros.  One group arises 

from the Airy function of Xi. and the other from the tangent 

function of XV.  The latter group corresponds to the transverse 

Whispering Gallery zeros which lie outside the circle of 

Region 6, and they link up smoothly with our results, Eqs. (31), 

for the zeros inside the circle.  We, therefore, approximate 

T"C*TO in Eq. (34) by the appropriate non-transition Debye 

expansion (Appendix A): 

(35) 
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We will determine the validity of this approximation by a 

self-consistent check after we have calculated the desired 

zero positions. 

Writing £<W0 in terms of $C*£)   using Eq. (6b) and sub- 

stituting these expansions into Eq. (5), we obtain the equation 

ti(Wte(f\~fl (36a, 
where p = ^j^Lfr^C^-^K^-do-r)^ 

Using Eqs. (A8) and the relations 

we obtain from Eq. (36b), to lowest order in the quantity *[/ : 

u    KT v • (37) 

Therefore, for tf^tfj^ij ^>1 for all XL>L, and letting 

7 = 5r' we exPand flL0?)    and Al(vn   about il^ .  Then the quantity 

•W--M is expanded in powers of '/p , yielding 

Using Eq. (A8d), an iterative solution of this equation 

gives the following result for the longitudinal Whispering 

Gallery wave numbers (A-l^^...): 

k-WL^-^S*/0- (39a) 
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where 

-t-1. p,«i«Tin r. 

') 

with AL defined in Eq. (22c) and 

— -j  * 

T^*L 

(39b) 

(39c) 

(39d) 

This result was arrived at after one iteration, assuming 

that 0CL*-*T^1. The first three terms agree exactly with 

those of the zeros of U^, &LV Eq. (26), and the material 

properties enter only in higher order terms. 

The binomial expansions used in obtaining Eqs. (39a, b) 

are valid under the conditions 

(40a) 

x, I'M ) 
X>3 A* 

(40b) 

(40c) 
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They impose lower limits on X, depending on the order of the 

zero, the most stringent condition being Eq. (40c).  For an 

aluminum cylinder in water, the lower limits of validity were 

found to be ka^23 for WL,1 and e.g. ka^l41 for WL, 5. 

In order to determine the validity of our approximation 

for T(*T), we substitute our result for VU n ,   Eq. (39b) into 

the exact expression, Eq. (34), and into the approximate 

expression, Eq. (35), and compare the two for the case of an 

aluminum cylinder in water.  We find that the approximation 

imposes an upper limit on x which increases monotonically 

with mode number n.  This result is illustrated in Figure 5, 

where we have plotted, as a function of H, the value of ka at 

which the absolute value of the relative error in the approx- 

imation begins to exceed 25 percent.  Numerical values of 

Eqs. (39) are presented in Section IE. 

IE.  Discussion of Results 

In this section, we present a graphical comparison, for 

the specific example of a solid aluminum cylinder in water 

(and in one case, also in vacuum), between our analytic results 

for the various zeros and the results of Dickey,16 who used 

numerical methods to solve for the roots of D(v)=0.  Dickey 

did not use Eqs. (7), but calculated the asymptotic expansions 

of the cylinder functions directly using the Airy-type expan- 

sions of Appendix A or Watson's formulation17 of the Debye 

expansions.  It is found that the two methods complement each 

other insofar as the analytic results can be more easily carried 

to very high values of ka (where both methods become more 



26 

accurate, but where the numerical trajectories of one type 

of zero often become hard to determine and to identify among 

the variety of other zeros), while the numerical results 

retain their accuracy down to lower values of ka than the 

analytic ones, due to the various approximations made in the 

latter method.  For the case of the Franz zeros, both methods 

are accurate down to very low values of ka and the agreement 

between the corresponding results is excellent.  For the 

Rayleigh, Stoneley, and transverse Whispering Gallery zeros, 

an apparently smooth transition is obtained from the numerical 

results below ka'vlOO (below ka^200 for the Whispering Gallery 

zeros) to the analytic results for the higher values of ka 

up to ka-*«o.  Numerical results for the longitudinal Whispering 

Gallery zeros are not yet available. 

Figure 6 presents the complex trajectories of kft'/fe, for 

the Rayleigh zero as a function of the parameter ka.  The 

circles represent the numerical and the crosses the analytic 

results (the latter being also shown in Figure 2).  The agree- 

ment becomes better as ka increases.  The circles appear to 

tend towards the calculated flat Rayleigh limit for ka-**o (square) , 

which had been used as the anchor point for the analytic cal- 

culation, but which has no connection with the numerical calcu- 

lation. 

In Figures 7, dispersion curves for the Rayleigh zeros are 

shown for aluminum cylinders in water (Figure 7a) or in air 

and vacuum (Figure 7b) .  The Rayleigh wave phase velocity &*! 

is plotted in Figure 7a relative to the sound speed in water; 
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i.e., essentially the quantity <v/c - ^Aä.V  is plotted, where 

fe-ltV^ Ke.v^it') .  The results (circles:  numerical results; 

curve:  analytic result) tend towards the flat limit, 'CA/C , 

as ka-v*.  In Figure 7b, we plot the numerical Rayleigh zeros 

(circles) for the case of an aluminum cylinder in air £c-330 

m/sec,^|= 0.00129j/c^3 ) and the analytic results (curve) as 

well as some previous results of Viktorov8'18 (crosses) for 

the aluminum cylinder in a vacuum.  Here, the values of >Cfc'/c» 

(i.e., normalized to the flat Rayleigh speed) are plotted vs. 

R^.  The flat limit for aluminum-vacuum used here was taken18 

as ^ft-0.9 33fcT-2 836 m/sec. 

Figure 8 presents the numerical results (solid circles) 

and the analytic results (crosses) for the Stoneley wave phase 

velocity, X2S'/c , approaching the flat Stoneley limit >Cs/c= 

0.9975 (calculated by our numerical solution of the flat 

Rayleigh equation) as ka-*«*.  For values up to ka = 100, the 

agreement is not as close as for the case of the Rayleigh zero, 

but as pointed out earlier, the analytic method should become 

valid for the Stoneley zero only at relatively higher values 

of ka as compared to the Rayleigh pole. 

The first five Franz zeros, together with the Stoneley 

zero again, are shown in Figure 9; here, Figure 9a presents 

dispersion curves of >CP/c and £$•/£, plotted vs. ka and Figure 

9b shows the normalized attenuations or imaginary parts of the 

wave numbers, ^/fea and VS'LJIIQ.   *  plotted vs. ka.  The agree- 

ment between the solid curves (analytic results) and the 



28 

circles (numerical results) is excellent, reflecting the 

increased overlap in the range of validity of the two methods 

for this case. 

Results for the Stoneley zero (solid circles and crosses) 

have been entered in Figures 9a and 9b also.  While its dis- 

persion curve is very similar to that of one of the lower 

Franz zeros, it may nevertheless be clearly distinguished from 

the latter by its much lower attenuation as seen in Figure 9b. 

In Figure 10a, the dispersion curves of AIJT/A,   for the 

first five transverse Whispering Gallery zeros and >C/t'/c for 

the Rayleigh zero are plotted vs. ka.  The solid curves are 

the numerical results, while the long dashes correspond to 

the analytic results for which the previously mentioned con- 

ditions of validity, Eqs. (10c) and (32c), are satisfied; the 

short dashes represent the analytic results for which these 

conditions are not satisfied.  There is a smooth transition 

from the numerical to the analytic results, with the value 

of ka for which they link up increasing with mode number, as 

expected.  In Figure 10b, the normalized attenuations ^L/ka^^-r 

are plotted vs. ka.  The numerical results (solid curves) are 

shown for the first four zeros, while the analytic results 

(long dashes) are shown for the first two.  Although the agree- 

ment between the two methods is not as good here as it was in 

the dispersion curves, there is, nevertheless, a smooth transi- 

tion from the extrapolated numerical (short dashes) to the 

analytic results at high ka's. 
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The analytic results for the first seven longitudinal 

Whispering Gallerv zeros are shown in Figure 11.  The dis- 

persion curves of -Cwu/c vs • ka are given in Fiqure 11a, and 

the normalized attenuations vi./l*Vk>L.  vs« ka are plotted in 

Figure lib.  For each mode, the region of greatest accuracy 

is shown as a solid curve whose lower limit is determined 

from Eq. (40c) and whose upper limit is ka   from Figure 5. max 

Thus, our analytic and Dickey's numerical results, 

arrived at independently, are in good agreement with each 

other, increasingly so at high values of ka where the quantities 

tend toward their expected flat limits. 



Chapter II.  The Scattering of a Cylindrical Wave 

by a Large, Solid Elastic Cylinder 

If a cylindrical wave, emanating from an infinite line 

source of unit strength at o(*^>o)   in the fluid, is incident 

upon a solid elastic cylinder of radius a. (Figure 12), the 

total acoustic pressure at point TC^'P) in the fluid is1'19 

[with a time factor exp(-u»>'t) suppressed] 

rtt^iW^Hm    rcr.        (41a) 

where 

Gw-f, (   €„= a, n>o > 

^WSX^ + KtCQü 

iaaH^  «? «:>\ 

k— xH?<50   **   «*" 
o       *C*  «r\ 

(41b) 

(41c) 

and Dn, 0(n
u , andCK^1"  (1 = ^3 ) are defined in Eqs. (2). 
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Application of the Watson-Sommerfeld transformation1'19 

to the series solution then leads to 

P=P*-P* 
(42a) 

where 

(42b) 

(42c) 

and the contours C and C0 are shown in Figure 13 and 

result from opening up the original contour C of the Watson 

transformation.  The contribution of the "background 

integral"^ has been shown to be small20 and will be 

neglected.  The contour C0   surrounds the zeros of 2^, (first- 

order poles of the integrand) discussed in Chapter I. 

Splitting 7>x into integrals over contours CL and Cz  (Figure 

14) and applying Imai's transformation1'19 

cos <tf-<^ ^cosv^-Le^sin^v 

(43) 
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to the integral over C^ serves to split off the geometrical 

part of the solution  (which no longer has l/stVfrv  in the 

integrand), thus yielding residue sums which converge on both 

the insonified and shadow sides of the cylinder.  The geometri- 

cal part p. can be evaluated using the saddle point method 

(corresponding to the far-field approximation r^-*««), where 

the saddle point contour Cs is drawn in Figure 14.  Also shown 

is the saddle point (to the right of ka) which yields the 

incident wave and the saddle point V%    which yields the geo- 

metrically reflected wave1'19 and separates the two types of 

residue sums p^ and p^ (arising from the integrals around con- 

tours Cx andCx) .  Higher-order saddle points yield waves 

which are transmitted through the cylinder2 °.  We then have 

with 

(44a) 

|*« -^-r COty^e^ t>* u^MjÄ/w \ <44b) 

V 

where 

(44c) 

(44d) 

Dv= ^/Sv 
(44e) 
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In the limit of infinite radius, it can be shown that 7>u yields 

the corresponding geometrical portions of the field (i.e., 

incident, geometrically reflected, and transmitted waves) for 

the flat elastic half-space (cf. Appendix B and Brill20'21). 

We are concerned here with the residue sums p^ and pa, which 

yield circumferential waves, in the limit of zero curvature. 

V:e first examine the limiting behavior of the saddle point 

>5, since its position determines which residue sum is used. 

The equation which Vs satisfies is:
19 

cos'lvs +. cosH V*. - 2.cOsH2^L + <B 
(45) 

In taking the limit of Eq. (45), the following changes 

of variable are used22 (and will be useful later on): 

fc-^-a, f?o= *-«., 

(46a) 

(46b) 

(46c) 

where & is the angle of incidence on the flat elastic 

half-space.  Thus,CL, r, and r# tend toward infinity while 

the source-surface and receiver-surface distances remain 

constant.  Keeping terms in Eq. (45) through ^6^/ , we then 

find that: 

:i^s=L^o^T/v ' (47) 
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When we make the associations 

s-^x> &-►%, 1?o^n0> (48) 

it is clear that Eq. (47) is exactly the equation satisfied 

by the saddle point &0   for the flat elastic half-space (cf. 

Appendix B and Fig. Bl).  Thus, the saddle point *t   which 

yields the geometrically reflected wave in the cylindrical 

case tends toward the saddle point Q^ which yields the geo- 

metrical reflection in the flat case; the two are related by 

the transformation Eq. (46a) between the V- and fr-planes.  We 

will investigate the case where Refe.fc/*°4^ X (cf. Figure 14) 

which, in the limit, maps into the flat case shown in Figure 

B2 and discussed in Appendix B.  Thus, we consider a source- 

surface-receiver geometry for which, in the flat limit, all 

the surface waves (except the Stoneley) contribute to the 

field at the observation point.  From Figure 14, it is clear 

that residue sum p^ includes the Rayleigh and Whispering 

Gallery poles, while residue sum T>^ includes the Stoneley and 

Franz poles. 

IIA.  The Residue Sum pa. 

Using the expansion1 

^-S^-Ie^' n 

sWRVn wo > (49) 

we  can  rewrite f^ as 

X -bi. H£(k* H?>v\   Re*>* (so) 
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We then separate "p^ into the sums J>* p over the Franz poles 

and P^j'  over the Stoneley pole.  Using the Franz pole 

positions Vp^ of Eq. (25) , the appropriate Debye expansions 

(cf. Appendix A) for the Hankel functions of r and rj , and 

Eq. (46b) along with the relations (cf. Figs. 15) 

we find the following asymptotic expression for the Franz 

waves: 

te" 

where 

(51a) 

(51b) 

*' > (51c) 

and the arc lengths S and s' are shown in Figures 15. 
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The term tvF My  contributes an algebraic (non-exponential) 

factor (e.g., see Nussenzveig's calculation for the soft 

sphere23).  Thus, the n  Franz wave gets on the cylinder 

tangentially, creeps clockwise as in Figure 15a (or counter- 

clockwise as in Figure 15b) around the cylinder [traversing 

the arc length S (or s')] with speed **vOv*-kr) and attenuation 

ki,   and gets off tangentially after m. circumnavigations.  As 

a tends toward infinity, tt^s  and fei,S also become infinite, 

so that in the limit of zero curvature, the Franz waves are 

exponentially damped out and never reach the observation point. 

Thus, they do not contribute to the field in the flat case. 

In an analogous manner, we find the following asymptotic 

expression for the Stoneley wave (cf. Figures 15): 

A e t>y.$, 

(52) 

where we have assumed that the fluid is slightly lossy so 

that the flat Stoneley wave number fes is complex ( 1^= ksr+*-k*i) , 

Thus, the Stoneley wave is also exponentially damped out and 

never reaches the observer.  As the cylinder radius tends 

toward infinity, the Stoneley wave contributes to the field 

only in the case of glancing incidence ( ^*ta), in which case 
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the method of steepest descent must be modified to take into 

account the effect of a pole near the saddle point >£ (cf. 

Appendix B). 

I IB.  The Residue Sum pi. 

Using the expansion of Eq. (49), we can rewrite p^ as 

-p*to 

^«u 57 

where 
I to/. 

T>,<^ = 
<*y 

T* 

*v" *™ 73 

(53a) 

(53b) 

(53c) 

and tfy4 and ^ (c-1,2,3) are defined in Eqs. (2).  We note 

that Eq. (5), which we solved for the pole positions, corre- 

sponds exactly to •f^Cy) set equal to zero.  We separate T*x 

into the sums p^ ^i  over the Rayleigh pole and J>x ^ and p± -j- 

over the longitudinal and transverse Whispering Gallery poles, 

respectively. 

We calculate P* £'  first.  Using the pole position 

VÄ't=fek'a-> 
(54) 

where fe.^' is given in Eqs. (9) and (10), the appropriate 

Devye expansions (cf. Appendix A) for the Hankel functions 
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of x / K* / and r; , and Eq. (46c) , we find that 

> (55b) 

where (cf. Appendix 3) 

fc«Ctf-*Ä**k««V (55c) 

Since Tt(>6 set equal to zero and calculated to lowest order 

in X corresponds to the generalized Rayleigh Eq. (8), it can 

be shown that, using Eq. (46a) , 

/^-/ -Ucos^M^ 

(56) 

where D+ is defined in Eq< (B3c).  Combining Eqs. (55) and 

(56) , and using Eq. (46b) along with the fact that asymptot- 

ically (cf. Figure 16) 

_ So _ S 

we find the following asymptotic expression for the 

Rayleigh T.'ave       r 

i1!1*-   a. —:—:— ic 

(57a) 

(57b) 

J ws=o       > (53) 
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where the arc lengths sfc and SR' are shown in Figure 16. 

Thus, the Rayleigh wave is excited at the critical angle 

Q?c) &k creePs clockwise ( SÄ) or counterclockwise (S*) 

around the cylinder with speed ^/fefe^ and attenuation IV*fe^. 

and radiates off the cylinder at the same angle after m 

circumnavigations.  As a tends toward infinity, S^ also 

becones infinite, and therefore the imaginary part of feft. 

causes the wave which creeps around the shadow side of the 

cylinder to be exponentially damped out, so that it never 

reaches the observer.  The same argument holds true for the 

multiple circumnavigations (nv*o) and therefore the only wave 

which reaches the observation point in the limit of infinite 

radius is the one which traverses the finite arc length S* 

and corresponds exactly to the Rayleigh wave for the flat 

elastic half-space [cf. Eqs. (B8)]: 

>R'     * ivc^ * (59) 
By using the V'ronskian relation2" 

and the fact that [cf. Eq. (53b)] 

we can further simplify our expression for P± : 

***■   "  S • (61) 

(60a) 

(60b) 

iK«U. * 
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We calculate the limiting behavior (x-*#o) of J*± L using the 

pole positions Vyji  ^ °f Eqs. (39) even though the method used 

to calculate them imposed an upper limit on X which increased 

with mode number n(cf. Chapter ID2. and Figure 5).  The just- 

ification for this procedure will be seen later in the calcu- 

lation.  For pij we use the pole positions v»^,^ of Eqs. (31). 

Then, using Eq. (46c) and the appropriate Debye expansions 

(cf. Appendix A) for the Hankel functions of X, r, and rm  , and 

keeping one more order of accuracy of V^ in the phase terms 

than in the algebraic factors, we find that 

'^-v-f]^ (62a) 

where (cf. Appendix B) 

^.T-^'yNfc — V- MM 
In order to calculate the quantity 

[^f-jnfcc; > 

(63) 

we use the following asymptotic expression for a^Dwj} 

[i.e., right hand side of Eq. (5)]: 
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where y^-^/x  and +(*,:) *-=S~^ > is defined in Ec*' (6a). 

The following Airy-type asymptotic expressions for \(xC) 

and its derivative will also be helpful [cf. Eqs. (27) and 

(33)]: 

(#   »*' /K^> 
(65a) 

(65b) 

where we have calculated the leading order behavior of 

these quantities.  Then [ -^'(y*) ]  for vn=v^, ^  is found by 

using the asymptotic expansions of Chapter ID2. and Eqs. 

(64) and (65) along with the fact that [ef. Eqs. (36)] 

The  result  is 

fl«?-y*iO*£)^-£Y* •       (66) 

fi'CKvi'J "L -ft«.. 
ft<Hft 6«*-«T J * (67) 

Similarly, [ ^6^ I for >v,= y*/r; n is found by using the 

asymptotic expansions of Chapter IDl. and Eqs. (6 4) and 

(65) along with [cf. Eqs. (28)] 

*Vmi*r'iÄ 
and the result is 
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Finally, using Eqs. (62) and (46b) and the fact that 

asymptotically (cf. Figure 17) 

sine£- s^^T- |t« f-» (70a) 

COS&" "J C05&T ~ T2- = -T- > 

^      a (70b) 

(where C7.T is the excitation angle of the A Whispering 

Gallery wave) we find the following asymptotic expression 

for the longitudinal and transverse Whispering Gallery waves: 

where [ f^( vST ) ]'' is defined in Eqs. (67) and (69), ML fa) 

is the number of longitudinal (transverse) Whispering Gallery 

poles in the first quadrant of the V-plane (cf. Figure 14), 

and the arc lengths SLT and S»T  are shown in Figure 17. 

Thus, the n*^ longitudinal or transverse Whispering Gallery 

wave is excited at the critical angle C7LT given by 

{^M*^V*J 
* l (72) 

creeps clockwise ( SLT) or counterclockwise ( Si T) around 

the cylinder with speed <^jk. sir\ ft T  and radiates off at the 

same angle after n circumnavigations.  If we assume that the 

cylinder is slightly lossy, so that fc^r has a small imaginary 



43 

part, then as a tends toward infinity, SLT also becomes 

infinite, and the waves which creep around the shadow side 

of the cylinder [including the multiple circumnavigations 

(m*o)] are exponentially damped out and never reach the 

observer.  Tne waves which remain are those which traverse 

the finite arc length 5L>T; 

(73) 

We now approximate the residue sum in Eq. (73) by an 

xntegral: 

. r^-^M71* ST 
(74) 

where we have used the approximation2  for *)n  that holds 

*or larce r\'. 

L  *  J (75) 

The approximation of the sum by an integral is justified 

because /v^T goes to infinity as a tends toward infinity and 

because the function in the sum oscillates less rapidly as 

h increases, so that the contributions to the sum (integral) 

for small |\ tend to cancel out.  Thus, the primary contribution 

to the residue sum (integral) comes from the higher order poles. 

We are, therefore, also completely justified in using the pole 

positions Vw^n of Eqs. (39), since the method used to calcu- 

late them imposed an upper limit on K which increased monot- 

onically with mode number tt (cf. Chapter ID2. and Figure 5). 
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We point out that the method of approximating the residue sum 

by an integral is similar to that used by Tamir and Felsen25 

for the dielectric slab problem.  Rulf,22 on the other hand, 

in considering the fluid-fluid (with P^fx. )   cylinder problem, 

did not use the explicit pole positions to evaluate the 

residue sun, but converted it back to a contour integral 

surrounding the poles.  V?e treat the fluid-fluid case using 

our method in Appendix C. 

In order to evaluate the integral in Eq. (74) , first we 

change variables 

_ ftrtMl,/3 

? 
= j"3ff6M 

(76a) 

and then we evaluate the resultant integral: 

^m*fe)% ^o 

HT (76b) 

where we can assume that k^r has a small imaginary 

part to assure convergence.26 

In the limit of infinite radius, the expressions for 

pt^L and PXT tiien correspond exactly to the expressions 

for the longitudinal and transverse lateral waves for a flat 

elastic half-space [cf. Eqs. (B9) ] : 

(77a) 
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with 

ms-Nc> 



Conclusions 

We have established the connection between creeping wave 

and flat surface wave theory by investigating the limit of 

acoustic scattering from a solid elastic cylinder, imbedded in 

a fluid, whose radius tends to infinity. 

First, we calculated the asymptotic behavior of the com- 

plex circumferential wave numbers by substituting the appro- 

priate Debye-or Airy-type asymptotic expansions into the 3x3 

secular determinant and solving it using iterative techniques. 

The creeping wave modes fall into two classes:  those with 

speeds close to the sound speed in the fluid (Stoneley and 

Franz waves) and those with speeds close to the bulk wave 

speeds in the solid (Rayleigh and Whispering Gallery waves). 

It was found that, in the limit of infinite cylinder radius, 

the wave numbers of the Rayleigh and Stoneley modes tend toward 

those of the Rayleigh and Stoneley waves on a flat elastic 

half-space, while the Franz mode wave numbers tend toward the 

wave number of sound in the fluid.  The longitudinal and trans- 

verse Whispering Gallery node wave numbers tend toward the long- 

itudinal and transverse wave numbers in the solid.  Graphical 

results were presented for an aluminum cylinder in water (and 

in one case, also in vacuum) in the form of trajectories in 

the complex wave number plane, phase velocities, and attenua- 

tions, all as functions of fluid wave number times cylinder 

radius.  The results show good agreement with existing numerical 

results. 
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Then, using the Watson-Sommerfeld transformation, we 

investigated the limiting behavior of the solution to the 

problem of the scattering of a cylindrical wave from a cylinder 

whose radius tends to infinity.  Using the analytic expressions 

for the creeping wave numbers, we calculated the asymptotic 

behavior of the residue sums corresponding to the different 

classes of circumferential waves.  It was found that, in the 

limit of infinite cylinder radius, the Rayleigh wave for the 

cylinder goes over to the Rayleigh wave on the flat elastic 

half-space, while the Franz and Stoneley waves are exponentially 

damped out (the Stoneley wave contributes to the field in the 

flat case only at glancing incidence, which is a special case 

mathematically, and was not discussed).  In the limit, the 

longitudinal and transverse Whispering Gallery waves combine 

to form the longitudinal and transverse lateral waves, respec- 

tively, for the flat elastic half-space. 

Thus, the transition of creeping wave to surface wave 

theory, as the scattering object tends toward a flat surface, 

has been established. 



Appendix A 

Asymptotic Expansions of Cylinder Functions1 3' l **'17 '2 3 

In the following, we present asymptotic expansions of 

cylinder functions where both the values of the (real) argu- 

ment ,M  , and of the modulus of the (complex) index,V, are 

large. 

1.  Debye asymptotic expansions 

Debye expansions are appropriate for large values of 

*y~ ft" = ®\r# and are used outside the circles shown in Figure 

Al whose radii are determined by |V->f|- &Q1L'*)-     
The Debye 

expansions 

(Ala) 

X 1 +(y_v-)'/t|_"?   3M<v^) v-v»-)^ (_•«     ai<v^) +o(.^ W^ 

(Alb) 

are valid in Regions I and II of Figure Al, with 

48 
(Ale) 
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These regions are separated by the curves 

I,^vf-vc^-.o (A2) 

and by the portions of the real axis as indicated in the 

figure.  The roots of //v 6f) and of //y (*<)   lie on the curves 

labeled fWj in Figure Al, those of ///C*A and H%? (*&     on 

the curves labeled rU^ . 

In Region III, one has instead 

with 

\Xwv (cosU~ v/V>\*- 1^/^ . 
(A3c) 

In Regions IV and V, the appropriate results are obtained 

by using 

The curves n±i  are the anti-Stokes lines for the 

asymptotic expansions of H^vp ,   and the curves fl^ those 

for Hy(*()   •  In the vicinity of these lines (the "transition 
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region"), the sum of the asymptotic expansions for the two 

adjacent regions has to be used.  In the ensuing "transition 

Debye forms," the two exponentials then combine to form trig- 

onometric functions, while outside the transition regions, one 

of the two exponentials is dominant and the other subdominant. 

Debye asymptotic expansions for the Bessel functions are, 

for Region III 

v/L   i   r. ^   sr^  ~\ ") (A5a) 

with 

\lm(cosVCvvM^^/a . (A5b) 

In all other regions, the appropriate expansions are found 

by using 

together with the previously stated results for nv (**A . 

The zeros of ^v(V) are located on the real axis in Figure Al, 

to the left of -A* .  This portion of the real axis forms the 

anti-Stokes line for JvCV}, and in the surrounding transition 

region, one must use 

XstoiV)+dGf*>] 
(A7a) 
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with 

(A7b) 
W = <V-y^)K-ycos-'^-'S/t j 

where 

Q (A7c) 

2.  Airy-type asymptotic expansions 

For the case that [V-<v(= uOji1}   ,   asymptotic expansions 

of the cylinder functions which are expressed in terras of 

the Airy function are appropriate.  They are valid inside the 

circles of Figure Al.  We have13'1" 

<f- (A8a) 

0     Nf P (A8b) 

where 

(A8c) 

(A8d) 

with 

t&<yi>(^h (A8e) 

and 
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and where the Airy function is given by 

(A9a) 

(A9b) 

it satisfies Airy's equation, 

tfOb-*toM*o, (MO) 

For Jvfy i   one finds the compact expression 



Appendix B 

The Reflection of a Cylindrical Wave at a Plane 

Fluid-Solid Interface 

In this section, we calculate the total acoustic field 

due to a line source in the presence of a plane fluid-solid 

interface, where both source and receiver are situated in 

the fluid.  The analysis follows that of Brekhovskikh2 and 

Überall,1 who considered the fluid-fluid and fluid-solid cases 

for a point source, respectively.  The field can be resolved 

into the incident wave, the geometrically reflected wave, and 

surface and lateral waves which propagate along the boundary 

and radiate into the fluid. 

The geometry of the problem is shown in Figure Bl.  An 

infinite line source of unit strength is located at S.  The 

incident pressure wave at the observation point P is, there- 

fore *  [with a time factor exp(-ioi*) suppressed] 

Ty**±-H?(k?>. (Bl) 

Using the Sommerfeld representation12 for the Hankel function, 

we can write the incident field as a decomposition into plane 

waves   with angle of incidence©': 

(B2) 

where the contourC is drawn in Figure B2.  The reflected 

wave is then given by1'2 

'      H*ly*- (B3a) 
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where  Rtf9)    is   the plane wave  reflection  coefficient  for a 

plane  fluid-solid  interface:1 

**Ä/ö»     > (B3b) 

with _ 

2>± = ^ cos & [<£ - si^&f + f tutr S'^J 

fl L.V.T        J (B3c) 

and 

^T^KT-^^,   ^-M^- (B3d) 

Equation (B3a) for the reflected wave can be rewritten 

as 

7   C (B4) 

where />' is the distance from the image source S to the 

observation point P. 

The integral in Eq. (B4) is evaluated using the method 

of steepest descent1'2, where we assume kp'^l . The path 

of steepest descent Cs and the saddle point &0 (corresponding 

to the angle of incidence or reflection of the geometrically 

reflected wave) are shown in Figure B2.  The result for the 

geometrically reflected wave is then 

**r (B5) 

as expected from geometrical acoustics. 

Additional contributions to the reflected field arise 

from any singularities of R(£) which are crossed as contour 
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C is deformed into contour C5.  Branch point singularities, 

provided by the radicals », fcT are found at 

e^ ± s.vf'«s &T--t5i^«T (B6) 

while poles [corresponding to solutions of D =0, which is 

completely equivalent to the generalized Rayleigh Eq. (8)] 

of physical interest occur at 

&^  S'VT' (k*/k) , &s - s.V»(ks( |^ (B7) 

where Rfc and \t%  are the Rayleigh and Stoneley wave numbers 

[e.g., Eqs. (11) and (16) for the water-aluminum interface]. 

These branch points (and the corresponding branch cuts) and 

poles are shown in Figure B2. 

The angles Re6k/ ß*§r 1   &Lr   and dy are the critical angles 

of incidence for excitation of the Rayleigh, Stoneley, and 

longitudinal and transverse lateral waves, respectively (for 

the water-aluminum interface: 9L. = 13°26' ,  Q^=29°20 * , R* ^.=31°36 ' , 

Re^=90°).  When &d- fo.%., &i>   and öy, as in Figure B2, then the 

Rayleigh and lateral waves contribute to the field at the 

observation point P.  The Rayleigh wave contribution is found 

from the residue at the Rayleigh pole, while the longitudinal 

and transverse lateral wave contributions arise from integrals 

around the branch cuts originating at &L  and Sj-, respectively. 

The resulting expressions are: 

Rayleigh Wave: 

"*   * 3^5 (B8a) 
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where 

L0=*.|coseilJ   L=*/coSe}^ vj&^J&fe     (B8b) 

Longitudinal Lateral Wave: 

(B9a) 

Transverse Lateral Wave: 

pT= sgV^    m(«?-«t) fttft«-*Ü#Arl*a 
["«-«^VlC«?-«^    £^ 

(B9b) 

where 

U- ^O/COSBL^T    > L^/cos8l>T >   *W=/Vft 
(B9c) 

The geometrical meaning of these results is clear from 

inspection of the phases and Figures B3 and B4.  In each 

case, the wave is excited at its critical angle, propagates 

along the interface, and reaches the observation point P by 

radiating into the fluid at the same angle. 

The Stoneley wave is not excited unless  ö^v* (glancing 

incidence), in which case the method of steepest descent must 

be modified to take into account the effect of a pole near 

the saddle point.2  This case will not be discussed here. 



Appendix C 

Creeping Waves and Lateral Waves 

for the Fluid Cylinder 

In the case of scattering by a fluid cylinder (CT-*0) we 

have the residue suri pt of Eqs. (53) or (61) with 

«*,o°    n-    3^&> (cl) 

The Whispering Gallery pole positions are given by I N 

v^^^^^'tod) (c2) 

where, as in the case of the solid, the material properties 

enter only in higher order terms.  Using the appropriate 

Debye expansions for the Hankel functions of X and Airy-type 

expansions for the Bessel functions of X^ (cf. Appendix A) 

along with Eqs. (6 5) and the fact that 

5&ö|       = i ft. fr.wj.xfr- 
TvC^r-^Svx   Act.    V  L; > (C3) 

~xL    \ 
we obtain the result 

pifc-vS)' ^ -. fi«> 

ft.0-^ * > (C4) 

which is just the limit of Eq. (67) for the solid as c<T 

goes to infinity.  Then, using Eqs. (62), (46b), (70), and 

(C4), and approximating the residue sum by an integral as 

before, we find that 

(C5) 
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which is just the limit of Eq. (77a) as <XT  goes to infinity 

and corresponds exactly to the expression for the lateral 

wave for a flat fluid half-space2'22. 



List of Illustrations 

Fig. 1 Complex V-plane with various regions in which dif- 

ferent asymptotic expansions of cylinder functions 

are employed in our analytic calculation. 

Fig. 2   Rayleigh zero trajectory in the complex plane k^//^ 

at varying values of the parameter ka, for the case 

of an aluminum cylinder in water. 

Crosses:  present work; solid circles:  numerical 

results of UginSius9; solid square:  flat Rayleigh 

limit.  Also shown is the location of kr/fc. / whose 

(real) numerical value is 0.491. 

Fig. 3   Stone ley zero trajectory in the complex plane K-j'/fe. 

at varying values of the parameter ka, for the 

case of an aluminum cylinder in water. 

Fig. 4   Franz zero trajectories in the complex plane KFvJfe, at 

varying values of the parameter ka, for the cases of 

soft (•), rigid (•), and aluminum cylinders (x) in 

water:  (a) first Franz zero, v\=l, (b) second Franz 

zero, A=2. 

Fig. 5   The value of ka, as a function of mode number f\,   at 

which the absolute value of the relative error in 

the approximation to the tangent function, used to 
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calculate the longitudinal Whispering Gallery zeros, 

begins to exceed 25 percent. 

Fig. 6   Rayleigh zero trajectory in the complex plane k^'/fe. 

at varying values of the parameter ka, for the case 

of an aluminum cylinder in water.  Crosses:  analytic 

results; square:  flat Rayleigh limit (ka-*oo) .  Circles: 

numerical results. 

Fig. 7   (a)  Normalized phase velocity &&'/£,   of the Rayleigh 

wave for an aluminum cylinder in water, plotted vs. 

ka.  Circles:  Numerical results, curve:  analytic 

results. 

(b)  Normalized phase velocity >Cft'/c* of the Rayleigh 

wave, plotted vs. feÄa .  Circles:  numerical results 

for aluminum cylinder in air.  Curve:  analytic 

results, and crosses:  Viktorov1s8'18 results, both 

for aluminum cylinder in a vacuum. 

Fig. 8   Dispersion curve for the Stoneley wave on an aluminum 

cylinder in water.  Solid circles:  numerical results. 

Crosses:  analytic results. 

Fig. 9   Stoneley and first five Franz zeros for an aluminum 

cylinder in water.  (a) Dispersion curves, (b) normal- 

ized attenuation.  For the Franz zeros, analytic 
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results are given by solid curves, numerical results 

by open circles.  For the Stoneley zero, analytic 

results are given by crosses, numerical results by 

solid circles. 

Fig. 10  (a)  Dispersion curves for the first five transverse 

Whispering Gallery zeros and the Rayleigh zero for an 

aluminum cylinder in water.  The numerical results are 

given by solid curves; the analytic results are shown 

as long dashes where they are most accurate and short 

dashes where they are less reliable. 

(b)  Normalized attenuations for the Whispering Gallery 

zeros.  Solid curves:  numerical results for first four 

zeros.  Short dashes:  extrapolated numerical results. 

Long dashes:  analytic results for first two zeros. 

Fig. 11  The first seven longitudinal Whispering Gallery zeros 

for an aluminum cylinder in water.  (a) Dispersion 

curves, (b) normalized attenuation.  The analytic 

results are shown as solid curves where they are most 

accurate and dashes where they are less reliable. 

Fig. 12  Geometry of the cylinder scattering problem; line 

source at S, observer at P. 

Fig. 13 The complex V-plane showing contours for the Watson- 

Sommerfeld transformation used in the elastic cylinder 
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scattering problem [Figure taken from Doolittle, 

et al.1* with permission of the American Institute 

of Physics]. 

Fig. 14 The complex V-plane showing contours for separating 

out the geometrical wave.  Also shown schematically 

are the positions of the saddle point Vf and the 

Rayleigh ( fe^'CL) , Stoneley ( hs,a-) / Franz (vF) , and 

longitudinal (V«*.) and transverse ( ^JT) Whispering 

Gallery poles for a large, fixed value of ka. 

Fig. 15  Franz or Stoneley wave getting on the cylinder tan- 

gentially, creeping clockwise (Fig. 15a) or counter- 

clockwise (Figure 15b) around it, and getting off 

the cylinder tangentially. 

Fig. 16  Rayleigh wave being excited at the critical angle fy, 

creeping clockwise or counterclockwise around the 

cylinder, and radiating off at the same angle. 

Fig. 17 Longitudinal or transverse Whispering Gallery wave 

being excited at the critical angle 0^r , creeping 

clockwise or counterclockwise around the cylinder, 

and radiating off at the same angle. 

Fig. Al Complex V-plane showing regions of validity for dif- 

ferent asymptotic expansions of the cylinder functions, 

used in the analytic calculation. 



63 

Fig. Bl  Geometry of an observer at P receiving a cylindrical 

wave from a line source at S and a reflected wave 

from the image source at S *. 

Fig. B2  Integration path C for the incident and reflected 

waves in the complex 0*-plane; saddle point #« with 

path of steepest descent C ; Rayleigh pole 6^, Stoneley 

pole <%, and branch points Si, %- with corresponding 

branch cuts (dashed lines). 

Fig. B3  Cylindrical wave from source S exciting Rayleigh wave 

at point A, which propagates along interface and 

reaches observation point P by radiating into fluid 

at point B. 

Fig. B4  Cylindrical wave from source S exciting longitudinal 

or transverse lateral wave at point A, which propagates 

along interface and reaches observation point P by 

radiating into fluid at point B. 



A' 

V    XL/ vv\ *-   I/r 

en 

./ 



0.030 - 

0.025 

kR'i 

0.020 - 

0.015 

ko = l5 
ka«40 

x 

25 

50 x 

40 

0> 

60 
x    70 
. x 80 

50   ./x90, 60     *100 

70 80 

J_ _l_ 
0.43   0.44   0.45   0.46   0.47    0.48 

kRV 

200 
x300 x 

x • 
500 * 

RAYLEIGH 
LIMIT 

1000 

_L 

k 

0.50    0.51    0.52    0.53 

ro 



ro g 

10 

8 
*I000 

300 x 
x x 200 
500 

L-X 2000 

x 3000 

-*4000 

X 5000 
x 6000 

2 -x 7000 
™^ 5 8000 
000 h 0,000 

STONELEY LIMIT 

90 
xxx X x X X 

100       80 70 60 50 ka-40 

1 1 J_ 
1.00 1.02  1.04 1.06  1.08  1.10 

ksv/k 

JL 
1.12  1.14  1.16  1.18  I 

J 
.20 

*1 
H- 



67 Fig.   4a 

ko 

0.20r 

0.18 

0.16 

0.14 

0.12 

0.10 

0.08 

0.06 

0.04 

0.02 

ko«25 

Fl 

40 

50 

60 

70 

25 

25 
x 

60 
70 i 

100« 
200    x |0( 

40 
• 

50  40 
•     x 

*    x50 
X60 x70 

|500  x200 
l0J?£? * 500 I0Q0 x       i I 1 _L J 

1.00     1.02     1.04 1.06    1.08 

ka 

1.10      1.12      1.14 



68 Fig.   4b 

0.20 

0.18 

0.16 

014 

0.12 

0.08 

0.06 

0.04 

F2 ka = 60 

70 

80 

80 

90 x 

100 ^ 
f 

60, 

70 
x 

200 
* 

400. 

300 

500* 

1000 
0.02 h     * 

10,000 
* 1 -L 

1.00    1.02    1.04    1.06    1.08    1.10      1.12      1.14 

ka 



1200 

1000 

800 

k0MAx 600 

400 

200 

en 

0 
5 6 7 
MODE  NUMBER n 

8 10 
_J 
11 c 

U1 



0.030 

0.025 

kR'i 

k 

0.020 

0.015 

ka=l5 

20 
o 

25 
o 

ko=40 
X 

30 
o 

50 
x 

40 
o 

60 
x   70 
50   x 80™ D~        x90 

600     *XI00 
70 

o 

70>o        .|20 
80 tpr/*^ 200 

i 

100 

RAYLEIGH LIMIT 

x300 
500xxlOOO 

0.43   0.44   0.45    0.46   0.47    0.48 
kR'r k 

0.50    0.51    0.52    0.53 

<J\ 



2.6 t— 

500 1000 
ka 



72 Fig.   7b 

O 
O 
ro 

O 

8 

8 

8 

o 
er 

8 

O 
O 
o 

IT) 

ro 
rO c\J 

ad er 



* 

l.i 

LO 
Cs/C * 0.9975 

0.9 — 

• 
• 

• • 
• 

X 

• 

X 

x*X 

X 

x x X X "x"3?"!x""xT< 

08 — 
X 

0.7 — 
x 

0.6 — 

05 — 

r\A 

• 

1 1 1 1 1   1  1 1 1 1 1 1 1 1     1    1   1   1 
* 10 20 

u» 

* 

00 

50 100 
ka 

200 500 1000 



c 

1.0 

0.9 

0.8 

07 

-STONELEY • 
V     • 

06 

0.5 

0.4 
10 20 

J L 
50 

J I   1   1 
100 
ka 

i    i   i 

200 500 1000 

0) 



ko 

cr 
1000 

__ 



1000 o 
ft» 



0.006r 

0.005 - 

0.004 - 

U5") WT  0.003 - 

0.002 - 

0.001 - 

1000 

o 
cr 



30r 

WL 

20 

10 

CL/C = 4.292 

CT/C = 2.037 

Cp/C= 1.916 

10 20 

00 

J I L 
50 100 

ka 
200 500 1000 H- 



0.07 r- 

0.06 h 

0.05h 

0.04 h 

ka) ka/WL 

0.03 h 

0.02 h 

0.01 

*4 

1000 



80 Fig.   12 



81 Fig.   13 



vi 

°x °x° 

C,   vm kR-a 
■+ [^xS<<x'x<xS<oooooooooooc^   aJ     \{ -ft 

CO 

U3 



83 Fig.   15a 



84 Fig.   15b 



85 Fig.   16 

\ 
S(ro,0)  \ 

P(r,4>) 



86 Fig.   17 

SLT 



87 Fig.   Al 

^    <+- 

C\J 
I 

H 

N 

/ 

\ 

N 

CM 

>A 
- I 

W 

N 



88 Fig.   Bl 

P(X,Z) 

-*-x 
PZ> CL» CT 

SOLID 



00 
to 

03 



90 Fig.   B3 

S(0,Z0) 

P(X,Z) 

FLUID 
B SOLID 



91 Fig.   B4 

P(X,Z) 

FLUID 

B SOLID 
-»-X 



Bibliography 

1. H. Überall, "Surface Waves in Acoustics," in Physical 
Acoustics, Vol. 10, W. P. Mason and R. N. Thurston, 
editors ^Academic Press, New York, 1973). 

2. L. M. Brekhovshikh, Waves in Layered Media (Academic 
Press, New York, 196ÖT~i 

3. R. Stoneley, Proc. Roy. Soc. (London) A 106, 416-428 
(1924). 

4. R. D. Doolittle, H. Überall, and P. Ugincius, J. Acoust. 
Soc. Am. 43, 1-14 (1968). 

5. 0. D. Grace and R. R. Goodman, J. Acoust. Soc. Am. 39, 
173-174 (1966). 

6. A. D. Lapin, Soviet Phys.-Acoust. 15, 201-204 (1969). 

7. W. Franz, Zeits. Naturforsch. 9a, 705-716 (1954). 

8. I. A. Viktorov, Soviet Phys.-Acoust. 4, 131-136 (1958). 

9. P. Ugincius, Thesis, The Catholic University of America, 
Washington, D.C. (1968); NWL Report TR-2128, U.S. Naval 
Weapons Laboratory, Dahlgren, Va. (1968). 

10. E. Strick and A. S. Ginzbarg, Bull. Seis. Soc. Am. 46, 
281-292 (1956). 

11. J. A. Cochran, Numer. Math. 7, 238-250 (1965). 

12. A Sommerfeld, Partial Differential Equations in Physics 
(Academic Press, New York, 1949). 

13. W. Streifer and R. D. Kodis, Quart. Appl. Math. 21, 285-298 
(1964). 

14. W. Streifer and R. D. Kodis, Quart. Appl. Math. 23,   27-38 
(1965). 

15. W. Streifer, IEEE Trans. Antennas Propagation AP-12, 764- 
766 (1964). 

16. J. W. Dickey, Naval Ship Research and Development Center, 
Annapolis, Maryland (private communication). 

17. G. N. Watson, A Treatise on the Theory of Bessel Functions 
(Cambridge University Press, 1966). 

92 



93 

18. I. A. Viktorov, Rayleigh and Lamb Waves (Plenum Press, 
New York, 1967). 

19. 17. Franz, Theorie der Beugung Elektromagnetischer Wellen 
(Springer-Verlag, Berlin, 1957). 

20. D. Brill and H. Überall, J. Acoust. Soc. Am. 5£, 921-939 
(1971). 

21. D. Brill, Thesis, The Catholic University of America, 
Washington, D.C. (1970). 

22. B. Rulf, J. Math. Phys. 8, 1785-1793 (1967). 

23. H. M. Nussenzveig, Ann. Phys. 34, 23-95 (1965). 

24. M. Abramowitz and I. A. Stegun, Handbook of Mathematical 
Functions (National Bureau of Standards Applied Mathe- 
matics Series 55, Washington, D.C, 1964). 

25. T. Tamir and L. B. Felsen, IEEE Trans. Antennas Propaga- 
tion 13, 410-422 (1965) . 

26. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, 
Series, and Products (Academic Press, New York, 1965). 

Bl.  P. M. Morse and H. Feshbach, Methods of Theoretical Physics, 
Vol. I, (McGraw-Hill Book Co., Inc., New York, 1953). 

B2.  K. G. Budden, The Wave-Guide Mode Theory of Wave Propagation, 
(Prentice-Hall, Englewood Cliffs, New Jersey, 1961). 





I 
A 



DEPARTMENT OF  THE  NAVY 

NAVAL RESEARCH LABORATORY 
Washington. DC   20375 

POSTAGE AND FEES PAID 

DEPARTMENT OF THE NAVY 
DoD 316 

OFFICIAL BUSINESS 

PENALTY FOR PRIVATE USE, $300 

3> 
JO 
DO 


